LALIT NARAYANA MITHILA UNIVERSITY, DARBHANGA (BIHAR)

Ref. No.: DBC/BS **Date:** 24 Sept., 2020

B.COM. PART 1

CORE CONCEPT OF BUSINESS MATHMATICS & STATISTICS

TESTING DIFFERENCE BETWEEN THE MEANS OF TWO SMALL SAMPLES

There may be two objectives of testing difference between means of two small samples-

- 1) Whether both the samples have been drawn from the same population?
- 2) Whether the factor affecting both the samples is the same or there is significant difference?

The procedure to be followed for this test is as follows:

- 1) Null hypothesis: First of all, this hypothesis is formulated such that both samples have been drawn from population with the same mean or the two population means do not differ significantly,: H_0 : $\bar{x} = \mu_1 = \mu_2$
- 2) **Test statistic or t-statistic-** Under the assumption that population variances are unknown but equal ($\sigma^2_1 = \sigma^2$) for this the following formula is used:

$$t = \frac{I\bar{x} \, 1 - \bar{x} \, 2I}{S \, \sqrt{(\frac{1}{n_1} + \frac{1}{n_2})}}, \quad t = \frac{I\bar{x} \, 1 - \bar{x} \, 2I}{S} \sqrt{\frac{n \, 1n \, 2}{n \, 1 + n_2}}$$

S is computed as follows: $S = \sqrt{\frac{\Sigma(dx1)2 + \Sigma(dx2)2}{n1 + n2 - 2}}$

If standard deviations of the samples are given, S will be calculated as follows:

$$S = \sqrt{\frac{n1(\sigma 2)1 + n2(\sigma 2)2}{n1 + n2 - 2}}$$

- 3) **Degree of freedom:** degrees of freedom= n1 + n2 2
- 4) **Decision:** If calculated value of t is equal to or less than its critical or table value, the null hypothesis is accepted. If calculated value of t is greater than its critical or table value, the null hypothesis is rejected.

Example-39: Two groups of students appeared in a test examination and the marks obtained by them were as follows:

G-1 18 20 36 50 49 36 34 49 41

LALIT NARAYANA MITHILA UNIVERSITY, DARBHANGA (BIHAR)

G-2 29 28 26 35 30 44 46

Examine the significance of difference between mean marks secured by the above two group.

Solution-39:

Null Hypothesis: There is no significant difference between mean marks by two groups.

$$\overline{x} = \sum x/n$$

$$\overline{x} = \sum x/n$$

$$\bar{x} = 333/9 = 37$$

$$\bar{x} = 238/7 = 34$$

Group 1 (x = 37)			Group 2 (x = 34)		
X ₁	dx ₁	$(dx_1)^2$	X ₂	dx ₂	$(dx_2)^2$
18	-19	361	29	-5	25
20	-17	289	28	-6	36
36	-1	1	26	-8	64
50	13	169	35	1	1
49	12	144	30	-4	16
36	-1	1	44	10	100
34	-3	9	46	12	144
49	12	144			
41	4	16			
333	0	1134	238	0	386

Test Statistics:
$$S = \sqrt{\frac{\Sigma(dx \, 1)2 + \Sigma(dx \, 2)2}{n1 + n2 - 2}}$$

$$S = \sqrt{\frac{1134 + 386}{9 + 7 - 2}} = \sqrt{\frac{1520}{14}} = \sqrt{108.57} = 10.42$$

$$t = \frac{I\bar{x} \, 1 - \bar{x} \, 2I}{S} \sqrt{\frac{n1n2}{n1 + n2}} = \frac{I37 - 34I}{10.42} \sqrt{\frac{9*7}{9+7}} = \frac{3}{10.42} \sqrt{\frac{63}{16}}$$

$$=\frac{3}{10.42}*1.984=0.571$$

Degree of freedom: $n_1+n_2 = 9+7-2 = 14$

Decision- The calculated value of t is 0.57, while its table value at 5% level of significance and for 14 d.f. is 2.145. Thus the null hypothesis accepted and there is no significant difference between mean marks secured by two groups.